Effects of selective hyperglycemia and hyperinsulinemia on glucose transporters in fetal ovine skeletal muscle.

نویسندگان

  • M S Anderson
  • J He
  • J Flowers-Ziegler
  • S U Devaskar
  • W W Hay
چکیده

We measured net fetal glucose uptake rate from the placenta, shown previously to be equal to total fetal glucose utilization rate (GUR(f)) and proportional to fetal hindlimb skeletal muscle glucose utilization, under normal conditions and after 1, 2.5, and 24 h of selective hyperglycemia increasing G or selective hyperinsulinemia increasing I. We simultaneously measured the amount of Glut 1 and Glut 4 glucose transporter proteins in fetal sheep skeletal muscle. With increasing G , GUR(f) was increased approximately 40% at 1 and 2.5 h but returned to the control rate by 24 h. This transient increasing G -specific increasing GUR(f) was associated with increased plasma membrane-associated Glut 1 (4-fold) and intracellular Glut 4 (3-fold) protein beginning at 1 h. With increasing I, GUR(f) was increased approximately 70% at 1, 2.5, and 24 h. This more sustained increasing I-specific increasing GUR(f) was associated with a significant increase in Glut 4 protein (2-fold) at 2.5 h but no change in Glut 1 protein. These results show that increasing G and increasing I have independent effects on the amount of Glut 1 and Glut 4 glucose transporter proteins in ovine fetal skeletal muscle. These effects are time dependent and isoform specific and may contribute to increased glucose utilization in fetal skeletal muscle. The lack of a sustained temporal correlation between the increase in transporter proteins and glucose utilization rates indicates that subcellular localization and activity of a transporter or tissues other than the skeletal muscle contribute to net GUR(f).

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Time-dependent and tissue-specific effects of circulating glucose on fetal ovine glucose transporters.

To determine the cellular adaptations to fetal hyperglycemia and hypoglycemia, we examined the time-dependent effects on basal (GLUT-1 and GLUT-3) and insulin-responsive (GLUT-4) glucose transporter proteins by quantitative Western blot analysis in fetal ovine insulin-insensitive (brain and liver) and insulin-sensitive (myocardium, skeletal muscle, and adipose) tissues. Maternal glucose infusio...

متن کامل

Effects of acute hyperinsulinemia on insulin signal transduction and glucose transporters in ovine fetal skeletal muscle.

To test the effects of acute fetal hyperinsulinemia on the pattern and time course of insulin signaling in ovine fetal skeletal muscle, we measured selected signal transduction proteins in the mitogenic, protein synthetic, and metabolic pathways in the skeletal muscle of normally growing fetal sheep in utero. In experiment 1, 4-h hyperinsulinemic-euglycemic clamps were conducted in anesthetized...

متن کامل

Glucose transporter protein responses to selective hyperglycemia or hyperinsulinemia in fetal sheep.

The acute effect of selective hyperglycemia or hyperinsulinemia on late gestation fetal ovine glucose transporter protein (GLUT-1, GLUT-3, and GLUT-4) concentrations was examined in insulin-insensitive (brain and liver) and insulin-sensitive (myocardium and fat) tissues at 1, 2.5, and 24 h. Hyperglycemia with euinsulinemia caused a two- to threefold increase in brain GLUT-3, liver GLUT-1, and m...

متن کامل

Ontogeny and insulin regulation of fetal ovine white adipose tissue leptin expression.

Leptin, an adipocyte-derived factor, has multiple biological roles including mitogenesis. We investigated the effect of normal development, acute and chronic hyperglycemia and hypoglycemia, and selective acute hyperglycemia, or hyperinsulinemia, on fetal ovine white adipose tissue (WAT) leptin mRNA concentrations. Leptin mRNA amounts expressed as a ratio to the internal control ribosomal S2 mRN...

متن کامل

Rates and tissue sites of non-insulin- and insulin-mediated glucose uptake in humans.

In vivo glucose uptake can occur via two mechanisms, namely, insulin-mediated glucose uptake (IMGU) and non-insulin-mediated glucose uptake (NIMGU). Although the principal tissue sites for IMGU are skeletal muscle, the tissue sites for NIMGU at a given serum glucose concentration are not known. To examine this issue, rates of whole body glucose uptake (Rd) were measured at basal and during gluc...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • American journal of physiology. Regulatory, integrative and comparative physiology

دوره 281 4  شماره 

صفحات  -

تاریخ انتشار 2001